Three MSU Doctoral Students Receive 2016 Kopriva Graduate Student Fellowships

BOZEMAN -- Three doctoral students who work on research projects with biomedical applications have been awarded 2016 Kopriva Graduate Student Fellowships from the College of Letters and Science. Arianna Celis, Amanda Fuchs and Amanda Byer, all students in the Department of Chemistry and Biochemistry, will each receive $5,000 to support their...

BOZEMAN -- Three doctoral students who work on research projects with biomedical applications have been awarded 2016 Kopriva Graduate Student Fellowships from the College of Letters and Science.

Arianna Celis, Amanda Fuchs and Amanda Byer, all students in the Department of Chemistry and Biochemistry, will each receive $5,000 to support their research, including for travel expenses or for instruction, books, supplies and special research services. Each will give a Kopriva Science Seminar Series lecture during the 2016-17 or 2017-18 academic years.

Celis studies heme, the compound of iron and the organic molecule protoporphyrin IX that is one of the most ancient and prevalent biological molecules. She is working on a recently discovered pathway for heme biosynthesis that is unique to several bacteria, including many important pathogens. This pathway ends in a step catalyzed by an unusual enzyme known as HemQ. Celis is studying the mechanism by which the HemQ in Staphylococcus aureus, a leading cause of bacterial infections of human skin and soft tissues, performs its function at the chemical and cellular levels. Researchers hope this work will result in a molecular-level understanding of HemQ’s role in Staphyloccocus aureus, which may be applicable to a full range of pathogens identified as emerging or relevant to biodefense, such as methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Bacillus anthracis and others.

Fuchs investigates the interactions between bacterial biofilms and human macrophages, a type of white blood cell found in most bodily tissues. Bacterial biofilms consist of densely packed communities of microbial cells that grow on living or inert surfaces. Biofilms are more resistant to antibiotic treatment and are known to evade the immune system. Bacteria residing within chronic wounds, such as diabetic foot ulcers, often form biofilms and have been shown to cause a significant delay in the healing time and closure of wounds due to excessive inflammation. Macrophages survey the area for foreign substances, microbes and cellular debris, and it is speculated that macrophages are primarily responsible for the resolution of inflammation in wounds. Fuchs is studying the metabolites and metabolic pathways involved in the interactions between Pseudomonas aeruginosa biofilms and human macrophages to gain insights into the cellular mechanisms contributing to persistent inflammation in chronic wounds.

Byer investigates one of the largest enzyme superfamilies that exists in all domains of life: the radical S-adenosyl-L-methionine (SAM) enzyme superfamily. When human radical SAM enzymes fail, it can lead to diseases such as viral infection, diabetes mellitus, impaired cardiac and respiratory function, congenital heart disease and cofactor deficiency. Through a SAM and iron-sulfur cluster part, radical SAM enzymes generate a radical, or unpaired electrons, which can be destructive in biological systems if uncontrolled. Byer's research uses various spectroscopic techniques to examine radical SAM enzyme-active sites and identify how radical chemistry is constrained by the protein environment in these organometallic -- chemical compounds that contain at least one bond between a carbon atom of an organic compound and a metal --biochemical systems.

Phil Kopriva, a 1957 microbiology graduate, established an endowment to fund the Kopriva Graduate Student Fellowships, which are awarded to recognize and support the research of outstanding graduate students in the areas of physiology and/or biochemistry. For a list of past recipients, please visit www.montana.edu/lettersandscience/kopriva/fellowship.html.

Jody Sanford, jody.sanford@montana.edu or (406) 994-7791

Source: www.montana.edu